[image: cover-image, Deutschlandfunk]
[image: Viele junge Erwachsene sind süchtig nach Sozialen Medien (picture alliance / dpa / Sebastian Kahnert)
]
nleicht_haelfte_der_jungen_erwachsenen_ist_suechtig_nach_20251124.mp3

22.11.2025
Hälfte der jungen Erwachsenen ist süchtig nach Sozialen Medien
Viele junge Erwachsene in Deutschland sind süchtig nach Sozialen Medien. Forscher haben eine Studie zu dem Thema gemacht. Sie sagen: Die Hälfte der Erwachsenen unter 20 Jahren hat Anzeichen dafür, dass sie süchtig sind.
Die Studie haben Wissenschaftlerinnen und Wissenschaftler von der Uni in der Stadt Bochum gemacht. Sie haben 22.000 Erwachsene befragt. Fast alle benutzen Soziale Medien wie Instagram, Facebook oder WhatsApp.
Die Studie haben Wissenschaftlerinnen und Wissenschaftler von der Uni in der Stadt Bochum gemacht. Sie haben 22.000 Erwachsene befragt. Fast alle benutzen Soziale Medien wie Instagram, Facebook oder WhatsApp.
Wörterbuch
	Medien

Medien sind Fernseh-Sender, Radio-Sender, Zeitungen und das Internet. Also alles, worüber Nachrichten, Informationen und Filme verbreitet werden.

	Studie

In einer Studie stehen Ergebnisse von Forscherinnen und Forschern. Sie haben dafür etwas untersucht – in der Natur, in ihrem Labor oder auch in der Bevölkerung.

© Deutschlandfunk 2025

OPS/images/cover-image.png
nachrichtenleicht

Halfte der jungen
Erwachsenen ist
suichtig nach Sozialen
Medien

OPS/images/554078747.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/nleicht_haelfte_der_jungen_erwachsenen_ist_suechtig_nach_20251124.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

