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Razzia bei jungen Leuten wegen Mails mit Bomben-Drohungen
In Deutschland hat es 2024 mehrere hundert Bomben-Drohungen gegen Schulen und Einkaufs-Zentren gegeben. Jetzt hat die Polizei die Wohnungen von 4 jungen Männern durchsucht. Die jungen Männer sollen die E-Mails mit den Drohungen verschickt haben.
Die Polizei sagt: 2 von den Verdächtigen sind jünger als 18. Wegen der Mails hatte es mehrere hundert große Einsätze von der Polizei gegeben. Einkaufs-Zentren mussten geräumt werden. Das heißt: Alle Menschen mussten die Einkaufs-Zentren verlassen. Bahnhöfe wurden gesperrt. Schulen mussten für kurze Zeit schließen.
Die Polizei sagt: Die 4 jungen Leute wollten keine echten Bomben explodieren lassen. Sie wollten nur damit drohen. Die Polizei sagt aber auch: Trotzdem nehmen wir solche Drohungen immer ernst. Die jungen Leute wollten mit ihren Mails vor allem vielen Menschen Angst machen, zum Beispiel Schülern und Schülerinnen. Sie wollten, dass es große Polizei-Einsätze gibt. Die Einsätze haben sehr viel Geld gekostet.
Wörter-Buch
	E-Mail

Eine E-Mail ist eine geschriebene Nachricht. Man verschickt sie über das Internet. Eine E-Mail ist so ähnlich wie ein Brief. Aber eine E-Mail kommt viel schneller an: Meistens braucht sie nur ein paar Sekunden.
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function stringWithId(stringId) {
    switch (stringId) {
        case "Pause Audio": return "Audio anhalten";
        case "Play Audio": return "Audio wiedergeben";
    }
    return stringId;
}

class AudioPlayer {
    constructor(audioElement) {
        var audioParentElement = audioElement.parentElement;
        audioElement.controls = false;
        var adhocElement = document.createElement("adhoc");
        this.buttonRadius = 30;
        this.svgMargin = 3;
        this.progressRadius = 25;
        this.svgRadius = this.buttonRadius - this.svgMargin;
        adhocElement.innerHTML = `<span class="audio-button-start" role="button"><span class="audio-button-centrator"><svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
            <g class="svg-contents" stroke-width="2" fill="transparent">
                <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
                <g stroke="white">
                    <path class="progress" d=""/>
                    <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
                </g>
            </g>
        </svg></span></span>`;
        this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
        this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
        this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
        this.svgElement.style.display = 'none';
        this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
        this.pathElement.style.display = 'none';
        this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
        this.completeElement.style.display = 'none';
        
        audioParentElement.insertBefore(this.audioButtonElement, audioElement);
        this.audioElement = audioParentElement.removeChild(audioElement);
        this.audioButtonElement.appendChild(this.audioElement);
        
        this.audioButtonElement.onclick = this.onButtonClick.bind(this);
        this.audioElement.onended = this.onAudioEnded.bind(this);
        this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

        this.StateEnum = {
        AtStart: 'AtStart',
        Playing: 'Playing',
        Paused: 'Paused',
        };

        this.state = this.StateEnum.AtStart;
        this.progress = 0;
        this.updatePlayerLook();
    }
    
    updatePlayerLook() {
        
        switch (this.state) {
            case this.StateEnum.AtStart:
            {
                this.audioButtonElement.className = "audio-button-start";
                this.svgElement.style.display = 'none';
                break;
            }
            case this.StateEnum.Playing:
            {
                this.audioButtonElement.className = "audio-button-pause";
                this.svgElement.style.display = 'unset';
                break;
            }
            case this.StateEnum.Paused:
            {
                this.audioButtonElement.className = "audio-button-resume";
                this.svgElement.style.display = 'unset';
                break;
            }
        }
        
        this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
    }
    
    audioButtonAriaLabel() {
        var isPlaying = this.state == this.StateEnum.Playing;
        var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
        var axDescription = this.audioElement.getAttribute("aria-label");
        if (axDescription.length > 0) {
            ariaLabel += ", " + axDescription;
        }
        return ariaLabel;
    }
    
    onAudioEnded() {
        this.audioElement.currentTime = 0;
        this.state = this.StateEnum.AtStart;
        this.updatePlayerLook();
    }
    
    onButtonClick() {
        switch (this.state) {
            case this.StateEnum.AtStart:
            {
                this.state = this.StateEnum.Playing;
                this.audioElement.play();
                break;
            }
            case this.StateEnum.Playing:
            {
                this.state = this.StateEnum.Paused;
                this.audioElement.pause();
                break;
            }
            case this.StateEnum.Paused:
            {
                this.state = this.StateEnum.Playing;
                this.audioElement.play();
                break;
            }
        }
        this.updatePlayerLook();
    }
    
    onTimeUpdate() {
        var newProgress = this.audioElement.currentTime / this.audioElement.duration;
        if (Math.abs(newProgress - this.progress) > 0.001) {
            var minFraction = 0.01;
            if (Math.abs(1.0 - newProgress) < minFraction) {
                // Practically a full circle.
                this.completeElement.style.display = 'unset';
                this.pathElement.style.display = 'none';
            } else {
                this.pathElement.style.display = 'unset';
                this.completeElement.style.display = 'none';
                var pathData = '';
                var radius = this.progressRadius;
                if (newProgress >= minFraction) {
                    // If < minFraction, the arc is very small - no need to draw it.
                    var startX = 0;
                    var startY = -radius;
                    var endAngle = (newProgress - 0.25) * ( 2 *Math.PI);
                    var endX = radius * Math.cos(endAngle);
                    var endY = radius * Math.sin(endAngle);
                    //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
                    var largeArc = newProgress > 0.5 ? 1 : 0;
                    pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
                }
                this.pathElement.setAttribute("d", pathData);
            }
            this.progress = newProgress;
        }
    }
    
    static playString() {
        return stringWithId('Play Audio');
    }
    
    static pauseString() {
        return stringWithId('Pause Audio');
    }

    static loadInstances() {
        var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
        audioElementArray.forEach(function(audioElement) {
                                  new AudioPlayer(audioElement);
                                  });
    }
}


function Body_onLoad() {
    AudioPlayer.loadInstances();
}





