[image: cover-image, Deutschlandfunk]
[image: wohnung.jpg]
justiz_ministerin_will_teure_mieten_fuer_wohnungen_mit_dlf_20260209_1038_99bcb8f0.mp3
08.02.2026

Justiz-Ministerin will teure Mieten für Wohnungen mit Möbeln verbieten
Mehr als die Hälfte der Menschen in Deutschland wohnt in einer Miet-Wohnung. Vor allem in Städten sind die Mieten oft teuer. Die Bundes-Justiz-Ministerin will die Regeln für Vermieter strenger machen. Sie hat jetzt ein neues Gesetz vorgestellt.
Es gibt schon ein Gesetz, um Mieter zu schützen. In dem Gesetz steht, wie viel teurer die Miete jedes Jahr werden darf. Vermieter können dieses Gesetz aber umgehen. Wenn zum Beispiel in einer Wohnung Möbel sind, kann der Vermieter mehr Geld fordern.
Die Justiz-Ministerin will das ändern. Sie heißt Stefanie Hubig und ist von der Partei SPD. Hubig sagt: Die Mieter müssen wissen, wofür sie Geld bezahlen. Vermieter sollen deshalb genau aufschreiben, wie viel Geld die Möbel in der Wohnung kosten. Es soll auch eine maximale Miete für Möbel geben.
Hubig will auch die Regeln für kurze Miet-Verträge strenger machen. Es soll für Vermieter außerdem schwerer werden, den Mietern zu kündigen.
Über das neue Gesetz von Hubig berät jetzt die Bundes-Regierung.

Wörter-Buch
	Miete

Miete nennt man das Geld, das man jeden Monat für eine Wohnung bezahlt. Der Mieter bezahlt das Geld an den Vermieter. Dem Vermieter gehört das Haus. Wieviel man bezahlen muss, steht im Miet-Vertrag.

	Justiz-Minister/ Justiz-Ministerin

Ein Justiz-Minister oder eine Justiz-Ministerin gehört zur Regierung. Er oder sie ist für das Recht zuständig, also zum Beispiel für die Gerichte und für viele Gesetze.

	Bundes-Regierung

Die Bundes-Regierung ist die Regierung von Deutschland. Zur Bundes-Regierung gehören die Minister und Ministerinnen. Jeder Minister ist für bestimmte Themen zuständig: zum Beispiel für Umwelt, Wirtschaft oder Bildung. Die Bundes-Regierung wird von der Bundes-Kanzlerin oder vom Bundes-Kanzler geleitet.

© Deutschlandfunk 2026

OPS/images/cover-image.png
Der Wochen-Riickblick in

nachrichtenleicht &S

Justiz-Ministerin will
teure Mieten fir
Wohnungen mit
Mobeln verbieten

OPS/images/wohnung.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/justiz_ministerin_will_teure_mieten_fuer_wohnungen_mit_dlf_20260209_1038_99bcb8f0.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

