[image: cover-image, Deutschlandfunk]
[image: EU.jpg]
eu_stuft_7_laender_als_sichere_herkunfts_staaten_ein_dlf_20260211_1237_4e2367fd.mp3
10.02.2026

EU stuft 7 Länder als „sichere Herkunfts-Staaten“ ein
Die Europäische Union hat mehrere Länder zu „sicheren Herkunfts-Staaten“ erklärt. Für die Menschen aus den Staaten bedeutet das: Sie können leichter aus der EU abgeschoben werden. Menschenrechts-Organisationen kritisieren das.
Zu den sogenannten sicheren Herkunfts-Staaten gehören 7 Länder. Es sind Kosovo, Bangladesch, Kolumbien, Ägypten, Indien, Marokko und Tunesien. Das Europäische Parlament hat der Liste zugestimmt.
Für Geflüchtete aus diesen Ländern hat die Entscheidung Folgen: Sie können zwar immer noch in der EU Asyl beantragen. Aber sie müssen beweisen, dass sie in ihrer Heimat in Gefahr sind. Sonst müssen sie dorthin zurück. Das Ziel von der EU ist: Asyl-Verfahren sollen nicht mehr so lange dauern.
Menschen-Rechts-Organisationen kritisieren die Liste mit den „sicheren Herkunfts-Staaten“. Die Organisationen sagen: Zum Beispiel Tunesien ist nicht sicher. Die Menschen-Rechte werden dort nicht eingehalten. Sie sagen auch: Jeder Mensch hat ein Recht auf Asyl.

Wörter-Buch
	Asyl

Länder können Menschen Asyl geben. Dass heißt: die Menschen dürfen in diesem Land leben. Sie bekommen dort Schutz. Flüchtlinge suchen oft Asyl, weil sie in ihrem Land verfolgt werden, oder weil dort Krieg ist. Wenn Flüchtlinge in Deutschland Asyl beantragen, müssen sie oft lange auf eine Entscheidung warten. In dieser Zeit nennt man die Flüchtlinge Asyl-Bewerber.

	Asyl-Recht

Viele Länder haben ein Asyl-Recht. Das sind Gesetze. In den Gesetzen steht, welche Flüchtlinge in dem Land leben dürfen. Wenn ein Flüchtling in ein Land kommt, kann er dort um Asyl bitten. Wenn er kein Asyl bekommt, muss er das Land oft wieder verlassen.

© Deutschlandfunk 2026

OPS/images/cover-image.png
| & [Deutschiandituni]

nachrichtenleicht

EU stuft 7 Lander als
»Sichere Herkunfts-
Staaten“ ein

OPS/images/EU.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/eu_stuft_7_laender_als_sichere_herkunfts_staaten_ein_dlf_20260211_1237_4e2367fd.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

