[image: cover-image, Detuschlandfunk]
[image: Heraskewytsch.jpg]
ukrainischer_skeleton_sportler_heraskewytsch_von_olympischen_dlf_20260213_1400_bba09c04.mp3
13.02.2026

Ukrainischer Skeleton-Sportler Heraskewytsch von Olympischen Spielen ausgeschlossen
Der ukrainische Skeleton-Sportler Wladyslaw Heraskewytsch ist von den Olympischen Spielen ausgeschlossen worden. Der Grund war: Heraskewytsch wollte einen besonderen Helm tragen. Auf dem Helm waren Fotos von ukrainischen Sportlern, die im Krieg getötet wurden.
Heraskewytsch hatte den Helm im Training an. Er wollte ihn auch im Skeleton-Wettrennen tragen. Aber das Internationale Olympische Komitee (IOC) hat gesagt: Das ist gegen die Regeln. Olympische Sportler dürfen nur ganz bestimmte Kleidung und Ausrüstung tragen. Es darf keine Werbung und keine politische Botschaft darauf zu sehen sein.
Heraskewytsch sagt: Ich habe nichts falsch gemacht. Ich wollte nur an die Sportler erinnern, die im russischen Angriffs-Krieg gegen die Ukraine getötet wurden. Er sagt: Andere Sportler haben auch an verstorbene Freunde und Verwandte erinnert. Heraskewytsch will beim internationalen Sport-Gerichts-Hof gegen seinen Ausschluss klagen.
Russland führt seit fast 4 Jahren Krieg gegen die Ukraine. Russland ist deswegen von den Olympischen Spielen ausgeschlossen.

Wörter-Buch
	Behinderung
Wenn ein Mensch eine Behinderung hat, ist etwas an ihm anders als bei den meisten anderen Menschen. Durch eine Behinderung wird manches im Leben schwieriger. Es gibt ganz unterschiedliche Behinderungen. Sie können alle Körper-Teile betreffen. Oder das Denken oder Fühlen.

	Skeleton
Skeleton ist eine Winter-Sport-Art. Ein Skeleton ist ein kleiner Schlitten aus Metall. Die Sportler liegen mit dem Bauch auf dem Schlitten. Dann rasen sie mit dem Kopf voran durch einen Eis-Kanal. Sie werden dabei so schnell wie Autos auf der Auto-Bahn.

	Olympische Winter-Spiele
Die Olympischen Spiele sind der größte Sport-Wettkampf der Welt. Es gibt Winter- und Sommer-Spiele. Olympische Winter-Spiele gibt es alle 4 Jahre. Sie sind jedesmal in einer anderen Stadt auf der Welt. Mitmachen dürfen nur die besten Sportler aus aller Welt.

	Nationales Olympisches Komitee
Fast jedes Land hat ein Nationales Olympisches Komitee. Ein Komitee ist eine Gruppe von Menschen. Das Olympische Komitee organisiert den Sport in dem Land. Das Komitee ist zum Beispiel zuständig für die Sportvereine in dem Land. Es ist auch zuständig für alle Sportlerinnen und Sportler, die bei den Olympischen Spielen mitmachen. In Deutschland heißt die Organisation „Deutscher Olympischer Sportbund“.

	Ukraine
Die Ukraine ist ein Land in Ost-Europa. Die Ukraine gehörte früher zu dem Land Sowjet-Union. Die Ukraine ist fast doppelt so groß wie Deutschland, aber es leben viel weniger Menschen dort. Viele von ihnen sprechen Ukrainisch und Russisch. Die Haupt-Stadt heißt Kiew. Ein Nachbar-Land von der Ukraine ist Russland. Russland möchte Teile von der Ukraine haben. Darum gibt es seit 2014 Kämpfe um diese Teile: zum Beispiel um die Halb-Insel Krim oder den Osten von der Ukraine. Im Jahr 2022 hat Russland dann die ganze Ukraine angegriffen. Seitdem ist Krieg in dem Land.

	Russland
Russland ist ein sehr großes Land. Es ist eines der mächtigsten Länder der Welt. Der größte Teil von Russland gehört zu Asien. Der kleinere Teil liegt in Europa. Die Haupt-Stadt von Russland ist Moskau.

© Deutschlandfunk 2026

OPS/images/cover-image.png
Der Wochen-Riickblick in

nachrichtenleicht &S

Ukrainischer
Skeleton-Sportler
Heraskewytsch von
Olympischen Spielen
ausgeschlossen

OPS/images/Heraskewytsch.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/ukrainischer_skeleton_sportler_heraskewytsch_von_olympischen_dlf_20260213_1400_bba09c04.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

