[image: cover-image, Deutschlandfunk]
[image: Sonder-Vermögen ist das Unwort des Jahres 2025. (picture alliance / Caro Kadatz)
]
nleicht_sonder_vermoegen_ist_das_unwort_des_jahres_20260116.mp3

16.01.2026
„Sonder-Vermögen“ ist das Unwort des Jahres
In Deutschland wählt jedes Jahr eine Jury das Unwort des Jahres. Ein Unwort ist ein Wort, das Dinge falsch darstellt. Die Jury sagt: Das Wort „Sonder-Vermögen“ ist das schlechteste Wort aus dem Jahr 2025. Denn das Wort wird eigentlich nur benutzt, damit Politiker nicht „Schulden“ sagen müssen.
Die Jury sagt: Das Wort „Sonder-Vermögen“ beschönigt die Schulden. So muss man nicht über die Schulden diskutieren. Die Jury findet: In einer Demokratie muss man diskutieren. Denn alle Menschen sollen wissen, was die Regierung entscheidet und können dann mitreden. Nur so funktioniert die Gesellschaft richtig.
Auf dem 2. Platz bei der Wahl kam das Wort „Zustrom-Begrenzungs-Gesetz“. Das Gesetz soll dafür sorgen, dass weniger Geflüchtete nach Deutschland kommen.
Die Jury sagt: Die Geflüchteten werden mit einer Gefahr in Verbindung gebracht. Denn ein Zustrom klingt nach Wasser und einer großen Gefahr. Es klingt nicht nach Menschen. Mit dem Zustrom sind aber geflüchtete Menschen gemeint, die nach Deutschland kommen.
Wörter-Buch
	Unwort des Jahres

Am Ende von jedem Jahr wählen Sprach-Experten ein „Unwort“. Sie wählen zum Beispiel ein Wort, das Menschen beleidigt. Es kann auch ein Wort sein, das Ereignisse falsch darstellt. Die Experten wollen, dass die Menschen über die Wörter nachdenken.

	Staats-Schulden

Staats-Schulden sind die Schulden von einem Land. Länder brauchen Geld, zum Beispiel um Schulen und Straßen zu bauen. Die Länder bekommen Geld von den Bürgern. Wenn das nicht reicht, müssen sich die Länder Geld bei den Banken leihen. Dann machen sie Schulden.

© Deutschlandfunk 2025

OPS/images/cover-image.png
|3 ceutschiondtunk

Der Wochen-Riickblick in

nachrichtenleicht &S

soonder-
Vermogen* ist das
Unwort des Jahres

OPS/images/568554521.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/nleicht_sonder_vermoegen_ist_das_unwort_des_jahres_20260116.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

