[image: cover-image, Deutschlandfunk]
[image: In Niedersachsen sollen Kinder erst später lernen, wie man beim Rechnen schriftlich teilt (picture alliance / CHROMORANGE / Udo Herrmann)]
nleicht_grund_schueler_in_niedersachsen_sollen_anders_20260116.mp3

16.01.2026
Grund-Schüler in Niedersachsen sollen anders rechnen lernen
In dem Bundes-Land Niedersachsen gibt es Diskussionen über den Unterricht im Rechnen. Neue Schüler sollen in der Grund-Schule anders lernen, wie man geteilt rechnet. Schriftliches Teilen sollen sie erst in den weiter-führenden Schulen lernen.
Teilen bedeutet: Man rechnet aus, wie oft eine Zahl in eine andere passt. Beim schriftlichen Geteilt-Rechnen lernen die Schüler das Rechnen in mehreren Schritten.
Die Ministerin für die Schulen in Niedersachsen sagt: Viele Kinder in der Grund-Schule verstehen diese Art zu rechnen noch nicht. Deswegen vergessen sie auch schnell wieder, wie es geht.
Die Kinder sollen deshalb lernen, wie man einfacher rechnen kann. Die Vertretung der Eltern sagt: Wir finden das gut.
Verschiedene Lehrer-Verbände sehen das anders. Sie sagen: Kinder sollten das schriftliche Teilen weiter früh lernen.
Im Vergleich zu anderen Ländern können Schul-Kinder in Deutschland nicht gut rechnen. Das haben mehrere Untersuchungen gezeigt.
Wörter-Buch
	Niedersachsen

Niedersachsen ist ein deutsches Bundes-Land, also ein Teil von Deutschland. Die Hauptstadt von Niedersachsen ist Hannover. Niedersachsen liegt in Nord-Deutschland. Auch ein Teil der deutschen Nordsee-Küste gehört zu Niedersachsen.

© Deutschlandfunk 2025

OPS/images/cover-image.png
nachrichtenleicht &S

Grund-Schiiler in
Niedersachsen sollen
anders rechnen lernen

OPS/images/393863315.jpg

OPS/toc.xhtml
		Kapitel 1

OPS/media/nleicht_grund_schueler_in_niedersachsen_sollen_anders_20260116.m4a

OPS/js/book.js
function stringWithId(stringId) {
 switch (stringId) {
 case "Pause Audio": return "Audio anhalten";
 case "Play Audio": return "Audio wiedergeben";
 }
 return stringId;
}

class AudioPlayer {
 constructor(audioElement) {
 var audioParentElement = audioElement.parentElement;
 audioElement.controls = false;
 var adhocElement = document.createElement("adhoc");
 this.buttonRadius = 30;
 this.svgMargin = 3;
 this.progressRadius = 25;
 this.svgRadius = this.buttonRadius - this.svgMargin;
 adhocElement.innerHTML = `<svg class="audio-button-progress-svg" viewBox="-${this.svgRadius} -${this.svgRadius} ${2*this.svgRadius} ${2*this.svgRadius}" style="width:${2*this.svgRadius}px;height:${2*this.svgRadius}px;" xmlns="http://www.w3.org/2000/svg">
 <g class="svg-contents" stroke-width="2" fill="transparent">
 <circle class="full-circle" cx="0" cy="0" r="${this.progressRadius}" stroke="#707070"/>
 <g stroke="white">
 <path class="progress" d=""/>
 <circle class="complete" cx="0" cy="0" r="${this.progressRadius}"/>
 </g>
 </g>
 </svg>`;
 this.audioButtonElement = adhocElement.getElementsByClassName("audio-button-start")[0];
 this.audioButtonElement = adhocElement.removeChild(this.audioButtonElement);
 this.svgElement = this.audioButtonElement.getElementsByClassName("svg-contents")[0];
 this.svgElement.style.display = 'none';
 this.pathElement = this.svgElement.getElementsByClassName("progress")[0];
 this.pathElement.style.display = 'none';
 this.completeElement = this.svgElement.getElementsByClassName("complete")[0];
 this.completeElement.style.display = 'none';

 audioParentElement.insertBefore(this.audioButtonElement, audioElement);
 this.audioElement = audioParentElement.removeChild(audioElement);
 this.audioButtonElement.appendChild(this.audioElement);

 this.audioButtonElement.onclick = this.onButtonClick.bind(this);
 this.audioElement.onended = this.onAudioEnded.bind(this);
 this.audioElement.ontimeupdate = this.onTimeUpdate.bind(this);

 this.StateEnum = {
 AtStart: 'AtStart',
 Playing: 'Playing',
 Paused: 'Paused',
 };

 this.state = this.StateEnum.AtStart;
 this.progress = 0;
 this.updatePlayerLook();
 }

 updatePlayerLook() {

 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.audioButtonElement.className = "audio-button-start";
 this.svgElement.style.display = 'none';
 break;
 }
 case this.StateEnum.Playing:
 {
 this.audioButtonElement.className = "audio-button-pause";
 this.svgElement.style.display = 'unset';
 break;
 }
 case this.StateEnum.Paused:
 {
 this.audioButtonElement.className = "audio-button-resume";
 this.svgElement.style.display = 'unset';
 break;
 }
 }

 this.audioButtonElement.setAttribute("aria-label", this.audioButtonAriaLabel());
 }

 audioButtonAriaLabel() {
 var isPlaying = this.state == this.StateEnum.Playing;
 var ariaLabel = isPlaying ? AudioPlayer.pauseString() : AudioPlayer.playString();
 var axDescription = this.audioElement.getAttribute("aria-label");
 if (axDescription.length > 0) {
 ariaLabel += ", " + axDescription;
 }
 return ariaLabel;
 }

 onAudioEnded() {
 this.audioElement.currentTime = 0;
 this.state = this.StateEnum.AtStart;
 this.updatePlayerLook();
 }

 onButtonClick() {
 switch (this.state) {
 case this.StateEnum.AtStart:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 case this.StateEnum.Playing:
 {
 this.state = this.StateEnum.Paused;
 this.audioElement.pause();
 break;
 }
 case this.StateEnum.Paused:
 {
 this.state = this.StateEnum.Playing;
 this.audioElement.play();
 break;
 }
 }
 this.updatePlayerLook();
 }

 onTimeUpdate() {
 var newProgress = this.audioElement.currentTime / this.audioElement.duration;
 if (Math.abs(newProgress - this.progress) > 0.001) {
 var minFraction = 0.01;
 if (Math.abs(1.0 - newProgress) < minFraction) {
 // Practically a full circle.
 this.completeElement.style.display = 'unset';
 this.pathElement.style.display = 'none';
 } else {
 this.pathElement.style.display = 'unset';
 this.completeElement.style.display = 'none';
 var pathData = '';
 var radius = this.progressRadius;
 if (newProgress >= minFraction) {
 // If < minFraction, the arc is very small - no need to draw it.
 var startX = 0;
 var startY = -radius;
 var endAngle = (newProgress - 0.25) * (2 *Math.PI);
 var endX = radius * Math.cos(endAngle);
 var endY = radius * Math.sin(endAngle);
 //A rx ry x-axis-rotation large-arc-flag sweep-flag x y
 var largeArc = newProgress > 0.5 ? 1 : 0;
 pathData = "M "+ startX + " " + startY + " A "+ radius + " "+ radius + " 0 " + largeArc + " 1 "+ endX + " " + endY;
 }
 this.pathElement.setAttribute("d", pathData);
 }
 this.progress = newProgress;
 }
 }

 static playString() {
 return stringWithId('Play Audio');
 }

 static pauseString() {
 return stringWithId('Pause Audio');
 }

 static loadInstances() {
 var audioElementArray = Array.prototype.slice.call(document.getElementsByTagName("audio"));
 audioElementArray.forEach(function(audioElement) {
 new AudioPlayer(audioElement);
 });
 }
}

function Body_onLoad() {
 AudioPlayer.loadInstances();
}

